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Abstract

An algebraic adaptive grid scheme based on the con-
cept of arc equidistribution is presented. The scheme

locally adjusts the grid density based on gradients of se-
lected flow variables from either finite difference or finite

volume calculations. A user-prescribed grid stretching
can be specified such that control of the grid spacing
can be maintained in areas of known flowfleld behav-

ior. For example, the grid can be clustered near a wall
for boundary layer resolution and made coarse near the

outer boundary of an external flow. A grid smoothing
technique is incorporated into the adaptive grid routine,
which is found to be more robust and efficient than the

weight function filtering technique employed by other re-

searchers. Since the present algebraic scheme requires no
iteration or solution of differential equations, the com-

puter time needed for grid adaptation is trivial, making

the scheme useful for three-dimensional flow problems.
Applications to two- and three-dimensional flow problems
show that a considerable improvement in flowfield reso-
lution can be achieved by using the proposed adaptive
grid scheme. Although the scheme was developed with

steady flow in mind, it is a good candidate for unsteady
flow computations because of its efficiency.

Introduction

The accuracy of numerical solutions in Computa-

tional Fluid Dynamics (CFD) is greatly affected by the
grid used in the calculation because the discretization
error is directly linked to grid sizes in the physical do-
main. This fact combined with the expanded scale of

CFD calculations has produced a need to optimise the
use of grid points. Consequently, it is now common prac-
tice to use stretched grid, which clusters grid points in
regions where gradients (and hence error) are anticipated
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to be large. However, in many of the complex problems
routinely dealt with by today's CFD researchers, there
are often not enough a priori knowledge about the flow-

field for one to generate an appropriately stretched grid.
In fact, one often finds that a pre-generated grid has clus-
tering in regions that are rather unimportant. For this
reason, methods for adapting grids to local flow'field gra-

dients are becoming increasingly popular for improving
the accuracy and efficiency of CFD solutions.

In the past decade, many adaptive grid schemes
have been developed[I]. These schemes can be divided
into two categories. In the first category, partial differen-

tial equations (PD. E) are solved to generate the grid[2],
and in the second category, algebraic relations between
the grid sizes and the flow derivatives are solved[3,4]. The

advantage of the PDE schemes is that there can be auto-
matic control over the orthogonality and smoothness of

the grid, while the advantages of the algebraic schemes

are that they are more robust, they are not restricted
by boundary point distributions, and they are compu-
rationally less time consuming. For these reasons, the
algebraic schemes are excellent candidates for unsteady

and large three-dimensional flow problems. The use of
adaptive grid is especially effective for three-dimensional
flow problems for it can drastically reduce the memory
and cpu time required for solving a given problem. How-
ever, there have been few applications of adaptive grid to
three-dimensional flow problems in the past because of

the complexity of the methods.

In the present paper, a simple algebraic grid adapta-
tion scheme based on the concept of arc equidistribution

is described. The concept of arc equidistribution was first

introduced by Dwyer, et al.[3], and had been applied to
two-dimensional flow calculations by Gnoffo[5] and later
to three-dimensional flow calculations by Nal_da_shi and

Deiwert{4]. The present adaptive grid scheme extends
the capability of this basic concept through the addition

of a stretching control mechanism and a smoothing pro-
cedure.



One often would like to have an adaptive grid ad-

just to the flowfield while still retaining certain prescribed

stretching. For example, in a flowfield where both a

shock and a boundary layer exist, it is difficult for an

adaptive grid scheme to capture properly the two high

gradient regions simultaneously. This dii_culty often re-

sults in an insufficient grid distribution in the boundary

laver. In external flow calculations, one would like to

have a smooth stretching that provides coarse grids near

the outer boundary. However, adaptive grid schemes usu-

ally give a fairly uniform grid spacing throughout the low

gradient regions. These difficulties are fairly common for

many of the adaptive grid schemes currently used.

To resolve this problem, the present scheme is so

designed that it has the capability of maintaining a pre-

scribed stretching while adapting the grid according to

the flow variables, thus allowing the fine grid in a bound-

ary layer and the coarse grid near the outer boundary to

remain intact. This unique feature provides the user with

additional control on how the grid is to be adapted based

on prior knowledge of the flowfield.

For all algebraic adaptive grid schemes, the con-

trol of smoothness and orthogonality is a major task.

Many sophisticated techniques had been developed by re-

searchers. For instance, Gnoffo[5] used a filtering scheme

on the weight function, and Nakahashi and Deiwert i41

used a torsion coefficient to control the smoothness and

orthogonality. In the present work, instead of trying

to build in sophisticated smoothing schemes, an elliptic

smoother is applied after the grid has been adapted. This

technique not only simplifies the formulation of the adap-

tive grid scheme, but also provides the user with greater

freedom on the control of smoothness.

In the following sections, the formulation of the

adaptive grid scheme is described along with results

from applying the scheme to two- and three-dimensional

compressible flow problems. The examples consist of

a two-dimensional supersonic compression ramp, a two-

dimensional hypersonic nozzle and a three-dimensional

subsonic jet-in-crossflow. The merits of the scheme are

clearly evident through comparisons between calculations

using adapted and unadapted grids.

Adaptive Grid Formulation

The basic idea behind an arc equi4istribution

scheme is to require the grid size to be inversely propor-

tional to a weight function so that the weight function

is equally distributed over the grid points. When the

weight function is constructed using the gradient of the

flow variables, one would have dense grid distribution in

regions of high gradients and thus reduce the discretiza-

tion errors in these regions. Such rearrangement of the

grid will provide a more uniform error distribution, and

hence a smaller overall discretization error.

To illustrate this idea, we can write in the x-

direction

,'xziwi = C, (1)

2

where Az, is the grid size. w, is a weight function that

can be constructed using the gradient of any of the flow

variables, and C is a constant. For a general coordinate

system (_,q), one can rewrite eq. tl)in the _-direction

as:

&w = C (2)

where S is the arc length on an q = const line. Ander-

son[2] derived a system of partial differential equations

for the x, y coordinates based on equation (2). In the

present work. eq. (2) is used directiv to derive the neces-

sary algebraic relations for grid adaptation.

Since it is customary to use _k_ = 1 in the computa-

tional domain, equation (2) can be cast into the following

discretized form:

&&w, = ),C, (3)

where

aS, = i(x_._ - x,): + (y,__ - tj_)'_i_/= (4)

and

,,,, = 1 - 31_:, (5)

with u representing any of the flow variables and 3 a

constant that controls the sensitivity to the flow gradient.

The coefficient ), is a constant to be determined, and Ci

can either be a constant or a function of _. If one chooses

c, = as_, (6)

with AS_ being the arc length of the old grid spacing, the

scheme will have "memory," i.e., it will have the ability to

retain the old spacing in the absence of strong gradients

in u. If C, is a user prescribed function of f, be it a

polynomial or an exponential function, then the resulting

adaptive grid will keep this prescribed stretching while

also adapting the grid spacing in accordance with the

flow gradient. This feature of stretching control will be

illustrated later in the Results and Discussion Section.

The constant )_ can be deterrmned by requiring the

new total arc length to be the same as the old total arc

length, i.e.,

c_.E as: = E as, = (z)
i i _ I/"i

Solving the above equation for )_ vieids

v &S?= _-, (8)_.-F-EZ

Now, assume that the boundary coordinates (zl, y,)

are given, and the grid spacing along one 7? = const line

has been calculated from eq. (3), then one can determine

z_+l and y,_.: from known values of z, y,, AS,, and the

old coordinates z_ and y o. We assume that the new grid

point is located on the same r/ = const line. Define the

arc lengths as
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If

i

S,=__.ASk, (9)
k=l

i

st= Z Asc. (1o)
/,=1

S.° < S, < S_+ I (11)

where n is the index of the old arc lengths, then we require

z_+, and W+I to satisfy

where

y = a,z + b,, (12)

a. = _ (13)
X o O

n+l -- _.

o o o o

b, = Y"z"*1 - Y"*lz" (14)
o _ o

Zn4.1 Z n

With these formulations,the new coordinates can now be

solved from eqs. (4) and (12). Ifwe always keep the last

grid point on the boundary, then no iterationis needed
in the calculation.

For a simple mesh, that isfor a grid mesh wherein

allthe grid linesdo not deviate significantlyfrom the x-

and y-directions,one can replace AS_ in equation (3) by

Az_ or Ay,, then z, and yi can be obtained directlyfrom

z_ = zi-1 + Azl, Yl = Y_-, + Aye, (15)

and there is no need to solve equations (4) and (12), mak-

ing the process simpler. Simple mesh is a frequent occur-

rence in internal flow computations.

Since the above described adaptive grid procedure

is basically an algebraic system solved on a line-by-line

basis, there is no control over the smoothness or the or-

thogonality of the resulting grid. In the present work,

instead of trying to build sophisticated control features

into the scheme, a simple elliptic smoother is used to

achieve the same end after the grid has been adapted.

For example, for the y-coordinate one can use either a

simple two point averaging

1

Y_ = _(Yi+l + Y_-,),

or a four point averaging

i = 2, 3, 4, (16)

1

y,.# = -_(y_+_.# + Y_-_.j + Yi.j+_ + Yi.j-_), i,j = 2, 3, 4,"
(17)

This smoothing process can be applied to the adapted

grid as many times as one chooses to achieve the desired

smoothness. Two or three iterations through the smooth-

ing process is often enough in practice. This is called an

elliptic smoother because equation (17) is, in fact, the

discretized form of a Laplace equation, and the averaging

process is equivalent to solving the equation ye{ + y_ = 0

iteratively.

During the grid adaptation process, the boundary

points can either be fixed or floating, depending on the

user's intention. When letting the boundary points float,

one can either use the above formula to adapt the bound-

ary grid points or simply use extrapolations from interior

points.

Results and Discussions

A number of two- and three-dimensional flow prob-

lems have been studied using the above described adap-

tive grid scheme. Since at this time we are only concerned

with steady flow problems, a stand alone adaptive grid

routine that can be used with various finite difference or

finite volume flow solvers was developed. The adaptive

grid routine reads grid and flow variables from the$1_t-

put of a flow solver, generates the flow-adapted grid, and

interpolates the flow variables on the new grid. The new

grid and flow variables are then used by the flow solver

to continue the computation. A typical adaptive solu-

tion would need two to three iterations between the flow

solver and the grid adaptation routine.

The flow solvers used in the present work are the

PARC2D and PARC3D codes[4], that were originally de-

veloped by NASA Ames[5] and modified by the AEDC

Group of Sverdrup Technology, Inc. for internal flow

problems. These codes solve the full Navier-Stokes equa-

tions using the approximate factorization algorithm by

Beam and Warrmng[6]. Central differences are used in

discretizing the spatial derivatives, and backward differ-

ences are used for the time derivatives. To avoid having

to solve a block pentadiagonal matrix, the Jacobian ma-

trices are diagonalized using their eigenvalues and eigen-

vectors. This procedure results in a set of scalar pentadl-

agonal equations. Second-order and forth-order artificial

dissipation terms are used in'the code to ensure stability

and convergence.

Supersonic Ramp Flow

In order to illustrate the ability of the present

scheme to maintain a prescribed grid stretching and the

effect of the elliptic smoother, a supersonic viscous flow

over a 9.5 degree ramp was computed. The initial solu-

tion and the unadapted grid used for the initial compu-

tation is shown in Figure 1 and 2. The freestream Math

number is 3, and the Reynolds number is 1 x l0 s. A

46 x 45 grid is used.

Without the new feature of stretching control, i.e.,

with C_ in equation (3) being a constant, the adaptive

grid scheme generated a grid as shown in Figure 3, which

pushed the grid points towards the upper boundary and

left only a few points for the boundary layer. The condi-

tion persisted despite the use of various combinations of

flow variables in constructing the weight function.

This problem was then solve with the stretching

control feature. The coefficients C_ were given as 0_+1 =

1.1C_, which is the original stretching for the initial un-

adapted grid shown in Figure 2. Figure 4(a) shows that

by using the new scheme the desired fine grid for the



boundarylayeris retained, while a finer grid for shock

capturing is also provided.

The grid lines in Figure 4a exhibit some kinks and

the changes in grid spacing are abrupt. Both charac-

teristics were eliminated by application of the elliptic

smoother as shown in Figure 4(b). In this specific case.

the grid had been run through the smoother five times.

The final adaptive solution is given in Figure 5 as

the flowfield Mach contours. The Mach contours show

that the diffused shock in the initial solution (Figure 1)

is now replaced by a sharp shock in the adaptive solution.

Hypersonic Nozzle Flow

The next apphcation we present is a two-

dimensional adaptive computation of a generic hyper-

some nozzle for the National Aero-Space Plane. The ge-

ometry is shown in Figure 6(a). The freestream Mach

number is 3, the combustor exit Mach number is t,

and pressure ratio between the combustor exit and the

freestream is 7, the Reynolds number based on the veloc-

ity at, and the height of, the combustor exit is 1.09 x l0 s,

and turbulent flow is assumed. The Mach number con-

tours of this flowfield are shown in Figure 6(b). Under

the above condition, the nozzle flow is overexpanded. The

shear layer trailing the cowl, between the freestream and

the engine exhaust, is bent towards the upper solid wall

due to the higher freestream pressure. The turning of

the flow at the cowl lip causes a shock which reaches the

upper wall and is reflected. Thus the flowfield contains

boundary layers, free shear layers, and shocks, making it

difficult to cluster grid points in the high gradient regions

before knowing the solution.

A flow adapted grid, shown in Figure 7, is first ob-

tained by using constant C, in equation (3). The cluster-

ing of the grid clearly shows the positions of the free shear

layer and the oblique shock above the free shear layer, and

it is apparent that a pro-generated grid cannot provide

the necessary fine grid for these high gradient regions.

The finer grid in the free shear layer region produces a

better resolution for the mixing between the engine ex-

haust and the external air, an important phenomenon in

high speed flight. However, grid lines have been pulled

away from the solid surface by the strong gradients in the

shock and the free shear layer, as can be observed from

Figure 7(b), which is a magnified part of the grid near

the upper wall. The very coarse grid at the boundary

could cause larger errors in shear stress and heat transfer

predictions at the wall. This problem is common to many

adaptive grid schemes presently in use (see e.g., Ref. [7]).

The boundary resolution problem is successfully re-

solved in the present study by assigning Ci in equation

(3) a function of y. An adapted grid that preserves a

prescribed stretching is shown in Figure 8. In this grid, a

reasonably fine grid spacing is maintained at the bound-

ary, ensuring better resolutionat the solidwall.

A comparison between the pressure distributions on

the upper wail of the nozzle before and after the use of

the adapted grid is given in Figure 9. From this compar-

ison we observe that without adaptive grid. the oblique

shock is rather diffuse before it reaches the upper wall,

thus producing a smeared pressure distribution on the

wall. On the other hand. the adaptive grid result not

only has moved the position of the shock slightly down-

stream, but also gives a steeper pressure rise at where

the shock reaches the wall. These differences in pressure

distributions will. of course, directly affect the numerical

prediction of the nozzle performance.

Note that in the present case. grid adaptation in

only one direction is sufficient; in fact, this is true for

many circumstances. However, to illustrate the capabil-

ity of treating three-dimensionai flow problems with the

present scheme, the following example of circular jet in-

jection is presented where grid adaptation is done in all

three directions.

Three-dimensional Jet-in-crossfiow

The three-dimensionai version of the adaptive grid

scheme was tested on a compressible subsonic jet-in-

crossflow problem. Interest in this case originates from

applications to combustion, film cooling, thrust vector

control jets, propulsive jets and ejectors. Previous in-

vestigators [8,9] have found these problems to be grid

dependent even on grids as dense as 98 x 82 x 62. It

is obviously impractical to routinely obtain solutionson

gridsof thissizewhen using a fullNavier-Stokes code such

as PARC3D. Consequently, the adaptive gridscheme was

applied to the jet-in-crossflowproblem with a moderate

grid density of 50 x 40 × 30 to illustrateitseffecton the

distributionof grid points and on the jet trajectory.

The conditions selected for this study were a jet

injected at 90 degrees to the crossflow with a velocity

ratio between the jet and crossflow, [_/U_., of 4.0. A

schematic representation of this case isshown in Figure

I0. To minimize the computational effort,only one-half

of the flowfieldwas solved by assuming symmetry along

the X-Y plane. In addition, a slip-wallcondition was

imposed along the boundary containing the jet orifice.

Solutions were obtained with the PARC3D code

using two differentgrids of the same overall density,

50 x 40 x 30 (X x Y x Z). The firstcalculationwas

performed on an unadapted grid with uniform spacing ex-
cept near the jet where the spacing was reduced to resolve

the jet orifice. The second calculation was started by

adapting this grid to local gradients in the total velocity.

The location of boundary points was determined by ex-

trapolation from the computational domain except along

the boundary containing the orifice where the points re-

mained fixed. In addition, no grid stretching was pre-

scribed.

The results from the unadapted and adapted grid
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_c!u';.onsare represented in Figure 11 (a) and 11 (b),

respectively, by Mach number contours along the center-

plane. The effect of grid adaptation is apparent in the

redistribution of grid points in Figure 11 (b). Points are

clustered on the aft side of the jet where strong gradients

exis_ between the jet and wake. Outside of the jet inter-

action region, where no significant gradients are present.

_he grid points are uniformly distributed. A direct result

of grid adaptation on the flowfield is evident in the dif-

ference in jet penetration between the two cases. Greater

resolution of the jet-wake region in the adapted grid case

results in less jet penetration which is in better agreement

with the data of Fearn and Weston i10] than the result

from the unadapted grid case.

A detailed comparison with experimental data will

be made after the boundary layer is resolved using

the grid stretching control feature of the adaptive grid

scheme. A comparisonof three-dimensional grids gener-

ated with and without this feature are shown in Figure

12 (a) and (b), respectively. The axes of both grids are

centered at the jet orifice. Figure 12 (b) is from the case
\

described above in which no stretching was prescribed.

As a result, the grid spacing becomes uniform away from

the jet. For the case shown in Figure 12 (a), stretching
was prescribed in the Y-direction to resolve the bound-

ary layer and in the X- and Z-directions to resolve the

jet orifice. Notice that the stretching is preserved in all

three directions, even away from the jet.

The adapted grid generated for the three-

dimensional case was skewed near the jet which initially

caused concern regarding the rate of convergence to a so-

lution. However, the convergence history for the adapted

grid solution was comparable to the unadapted grid so-

lution. The residual was reduced approximately eight

orders of magnitude in two thousand iterations in both

CaS( S.

Conelusion_

An adaptive grid scheme that-has the ability of re-

taining a prescribed stretching has been developed on the

basis of the arc equidistribution concept. The combina-

tion of this scheme with an elliptic smoother produces

a computationally efficient adaptive grid. The scheme

has been successfully applied to both two- and three-

dimensional flow computations, and the numerical results

show significant improvements in flowfield resolution.
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Figure 1. The Mach number contours of an un-

adapted grid solution for a Mach 3 viscous flow over a

9.5 degree ramp.

Figure 2. The initial grid used for the supersonic

flow over a ramp.

b)

Figure 4. The adapted grid with prescribed stretch-

ing: (a) without smoothing, (b) with smoothing.

Figure 3.

stretching.

The adapted grid without prescribed

6

Figure 5. The adapted grid solution for the super-

sonic ramp flow; Mach number contours.
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(b)
,shock

(a)
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layer
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Figure 6. Schematic representation of a hypersonic

nozzle, and the Mach number contours of the flowfield.

(a)

Figure 7. The adapted grid for the hypersonic noz-

zle flow, C, = const. (a) complete grid, (b) magnified

view of the upper wall near the shock.

Figure 8. The adapted grid for the hypersonic noz-

zle flow, C_ = f(V). (a) complete grid, (b) magnified view
of the upper wall near the shock.
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Figure 9. Comparison of pressure distributionson

the upper nozzle wall.
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Figure 10. Schematic representation of a jet-in-
Cross _ow.

JJ,,,, ,,, ,l,J,j,,,, III,,,II

[_ '. '1_1 I " "

FISH
t-_t I I tlt _,N

T"$,_ r_..J

I11111 _

ll_ ,ti +-_N",-
lllill..

ilLU_l[Lli Ill lllil

t"_fT_-lllllllllllll
HIII[I

lJ/lll

qq

I

s

I

J

/

I

/ I

<

!

JET ORIFICE

(b)

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 11. Mach number contours on centerplane;

Ua/U,,_ = 4.0, 50 x 40 x 30 grid. (a) unadapted grid

solution. (b) adapted grid solution.
Figure 12. Three-dimensional adapted grid for

the jet-in-crossflow problem; (a) stretched grid, (b) un-

stretched grid.
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